Preliminary communication

Synthesis of silylammonium and silylphosphosnium compounds by the reaction of amines and phosphines with silylcobalt tetracarbonyls

JAMES F. BALD, Jr. and ALAN G. MacDIARMID

The John Harrison Laboratory of Chemistry and the Laboratory for Research on the Structure of Matter, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (U.S.A.)

(Received June 12th, 1969; in revised form January 16th, 1970)

It has been reported¹ that $H_3Si-Co(CO)_4$ reacts with bases such as trimethylamine and pyridine to give species such as $[H_3SiB_2]^+[Co(CO)_4]^-$, $(B=NMe_3, C_5H_5N)$. In marked contrast, phosphines have been reported to react with $R_3Si-Co(CO)_4$ with elimination of carbon monoxide to give *trans*- $R_3Si-Co(CO)_3PR'_3$ [R=H and $R'=Ph^2$; R=Cl or Et and $R'=Et^3$].

We have found that NMe₃ undergoes instant reaction with a deficiency of Me₃Si—Co(CO)₄ in cyclohexane, at room temperature, to give a white precipitate, [Me₃SiNMe₃]⁺ [Co(CO)₄] ⁻. The carbonyl stretching frequencies in the infrared spectra of R₃Si—Co(CO)₄ and the Co(CO)₄ ion are very strong and have very different characteristic frequencies (Table 1). It has been pointed out by Aylett⁴ that the carbonyl stretching frequency provides an excellent "internal probe" to show whether or not the Co(CO)₄ ion is present in a given species. The data in Table 1 suggest most strongly that the formulation of this species as an ammonium salt is indeed correct, since the ν (CO) values for Na⁺[Co(CO)₄]⁻, [Me₃NH]⁺[Co(CO)₄]⁻, and [Me₃SiNMe₃]⁺[Co(CO)₄]⁻ are almost identical. A comparison of that portion of the infrared spectrum arising from the [Me₃SiNMe₃]⁺ ion with the spectra of several substituted ammonium ions⁵ and related compounds⁶, is also consistent with this formulation.

It was particularly interesting to note that no reaction occurred between $Cl_3Si-Co(CO)_4$ and NMe₃ under conditions identical to those used for the Me₃Si-Co(CO)₄/NMe₃ reaction, or even when a solution of $Cl_3Si-Co(CO)_4$ in neat NMe₃ was held at room temperature for one hour. This observation is consistent with recent studies which report that Cl_3Sil and NMe₃ do not react⁸. If the general type of compound formed from R₃Si-Co(CO)₄ and NMe₃ is indeed [R₃SiNMe₃]⁺[Co(CO)₄]⁻, then if R is an electronegative group (such as Cl) the compound would be expected to have a lower stat-lity than when R = Me. It has been pointed out previously⁹ that the presence of electronegative groups in a cation of this type will tend to decrease its stability; however, stabilization of cationic species containing electronegative groups is expected to be favored by the coordination of more than one molecule of base to the silicon¹⁰.

In the present investigation it was found that, in certain cases, phosphines underwent a reaction with R_3 Si— $Co(CO)_4$ analogous to that observed with tertiary amines.

J. Organometal. Chem., 22 (1970) C22-C24

TABLE 1 CARBONYL STRETCHING VIBRATIONS (ν (CO)) IN SELECTED COBALT TETRACARBONYL DERIVATIVES a

Compound	Observed (cm ⁻¹)	Conditions
Na ⁺ [Co(CO) ₄] - [Me ₃ NH] + [Co(CO) ₄] - c H ₃ Si-Co(CO) ₄ [H ₃ Si(NMe ₃) ₂] + [Co(CO) ₄] - [H ₃ Sipy ₂] + [Co(CO) ₄] - [H ₃ Sidipy] + [Co(CO) ₄] -	1883, 1861 (sh) ^b 1882 2105, 2050, 2025 1870 1882 1870	THF soln. 15 Nujol mull Gas ² Nujol mull ² Nujol mull ² Nujol mull ²
$Me_3Si-Co(CO)_4$ $Cl_3Si-Co(CO)_4$ $Et_3Si-Co(CO)_4$	2100, 2041, 2009 2118, 2062, 2037 2089, 2025, 1995	Gas ¹⁶ C ₁₆ H ₃₄ soln. ³ C ₁₆ H ₃₄ soln. ³
[Me3SiNMe3]+[Co(CO)4] - c $[Me3SiNMe3]+[Co(CO)4] - c$	1895 ^e 1882	CH ₃ CN soln. Nujol mull
$ [\text{Me}_3\text{SiPMe}_3]^+[\text{Co(CO)}_4] - c \\ [\text{Me}_3\text{SiPEt}_3]^+[\text{Co(CO)}_4] - c \\ [\text{Et}_3\text{SiPEt}_3]^+[\text{Co(CO)}_4] - c $	1885 1875 1885	Nujol mull Nujol mull Nujol mull
Et ₃ Si-Co(CO) ₃ PEt ₃ Cl ₃ Si-Co(CO) ₃ PMe ₃ Cl ₃ Si-Co(CO) ₃ PEt ₃	1952 1988 1986	C ₁₆ H ₃₄ soln. ³ C ₇ H ₁₆ soln. C ₁₆ H ₃₄ soln. ³
Me ₃ Si-Co(CO) ₃ PPh ₃	1939	Nujol mull

^a All measurements in this study, unless stated to the contrary, were made with a Perkin-Elmer model 521 double-beam spectrophotometer. ^b sh = shoulder. ^c Using standard vacuum system techniques the stoichiometries obtained for these adducts were: Me₃N / HCo(CO)₄ = 1.00 / 0.99; Me₃N / Me₃Si-Co(CO)₄ = 1.00 / 1.00; Me₃P / Me₃Si-Co(CO)₄ = 1.00 / 1.00; Et₃P / Et₃Si-Co(CO)₄ = 1.00 / 0.99. A commercial elemental analysis of $[Et_3PSiMe_3]^+[Co(CO)_4]^-$ was obtained (Found: C, 42.96; H, 6.68. C₁₃H₂₄O₄PSiCo calcd.: C, 43.09; H, 6.68%.) ^d Gas phase data are very similar ¹⁶. ^e Spectrum recorded with a Perkin-Elmer 137B Infracord spectrophotometer.

Thus PMe₃ reacted instantly with a deficiency of Me₃Si—Co(CO)₄ in hexane at room temperature to give a white precipitate of [Me₃SiPMe₃]⁺ [Co(CO)₄]⁻. A similar reaction occurred between PEt₃ and Me₃Si—Co(CO)₄ or Et₃Si—Co(CO)₄. This is believed to be the first synthesis of compounds which apparently involve simple phosphonium ions containing an R₃Si—group attached directly to phosphorus. The close similarity of ν (CO) values for the several [Co(CO)₄]⁻ species (Table 1) and for these phosphine derivatives strongly supports this formulation*. The ¹H NMR spectrum of [Me₃SiPMe₃]⁺ [Co(CO)₄] ¹¹ in CH₂Cl₂ was also consistent with this formulation: δ (Me₃Si) = 9.39 τ , δ (Me₃P) = 8.21 τ ; J(PH) = 11.6 Hz. In [Me₄P]⁺I⁻ ¹², τ = 7.53; J(PH) = 14.4 Hz. In Me₃P ¹², τ = 9.11; J(PH) = 2.7 Hz.

^{*}It has been reported previously that $Et_3Si-Co(CO)_4$ and PEt_3 react to give trans- $Et_3Si-Co(CO)_3PEt_3$. Why a different product is obtained in the present study is not clear; however, specific experimental details were not given for the synthesis of $Et_3Si-Co(CO)_3PEt_3$. The difference may be related to the fact that in the present study it was found that $[Et_3SiPEt_3]^+[Co(CO)_4]^-$ is extremely sensitive to traces of water (which may have been present in the previously reported synthesis) and as little as 1 mg of water brought about complex decomposition of approximately 500 mg of $[Et_3SiPEt_3]^+[Co(CO)_4]^-$.

It was interesting to find that when either the phosphorus or the silicon was bonded to electronegative groups, then no phosphonium compound was formed. This is exactly analogous to what was noted for the amine system. Thus, no silylphosphonium compound formation was noted when Me₃Si—Co(CO)₄ was mixed with PF₃ ¹³, PCl₃ or PPh₃, or when Cl₃Si—Co(CO)₄ was mixed with PF₃ ¹⁴, PMe₃ or PEt₃. Either no reaction was observed, or a slow replacement of CO by PR₃ took place with, or without, irradiation by ultraviolet light to give trans-R₃Si—Co(CO)₃PR₃. Thus UV irradiation of cyclohexane solutions of Me₃Si—Co(CO)₄ and PPh₃, or Cl₃Si—Co(CO)₄ and PF₃ yielded trans-Me₃Si—Co(CO)₃PPh₃ and Cl₃Si—Co(CO)₄, in the absence of ultraviolet light, during 2—3 hours at room temperature to give trans-Cl₃Si—Co(CO)₃PMe₃ and trans-Cl₃Si—Co(CO)₃PEt₃, respectively. For the latter compound this simply represents a confirmation of its earlier synthesis³.

ACKNOWLEDGEMENT

This research is based on portions of a thesis to be submitted by James F. Bald Jr., to the Graduate School of the University of Pennsylvania in partial fulfillment of the requirements for the degree of Doctor of Philosophy. It was supported by the Advanced Research Projects Agency, Office of the Department of Defense.

REFERENCES

- 1 B.J. Aylett and J.M. Campbell, Chem. Commun., (1967) 159.
- 2 B.J. Aylett and J.M. Campbell, Inorg. Nucl. Chem. Lett., 3 (1967) 137.
- 3 O. Kahn and M. Bigorgne, J. Organometal. Chem., 10 (1967) 137.
- 4 B.J. Aylett, Advan. Inorg. Chem. Radiochem., 11 (1968) 249.
- 5 E.A.V. Ebsworth and N. Sheppard, Spectrochim. Acta, 13 (1969) 261.
- 6 H.J. Campbell-Ferguson and E.A.V. Ebsworth, J. Chem. Soc., A. (1967) 705.
- 7 I.R. Beattie and F. Parrett, J. Chem. Soc., A, (1966) 1784.
- 8 I.R. Beattie, T. Gilson and G.A. Ozin, J. Chem. Soc., A, (1968) 1092.
- 9 A.G. MacDiarmid, Quart. Rev., 10 (1956) 208.
- 10 G.A. Ozin, Chem. Commun., (1969) 104.
- 11 W.I. Ingle and A.G. MacDiarmid, unpublished observations (1969).
- 12 J.B. Hendrickson, M.L. Maddox, J.J. Sims and H.D. Kaesz, Tetrahedron, 20 (1964) 449.
- 13 Y.L. Baay and A.G. MacDiarmid, Inorg. Chem., 8 (1969) 986.
- 14 R.E. Highsmith, J.R. Bergerud and A.G. MacDiarmid, unpublished observation (1969).
- 15 W.F. Edgell, M.T. Yang and N. Koizumi, J. Amer. Chem. Soc., 87 (1965) 2563.
- 16 A.P. Hagen and A.G. MacDiarmid, Inorg. Chem., 6 (1967) 686; ibid., 6 (1967) 1941.

J. Organometal. Chem., 22 (1970) C22-C24